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Abstract: A general probability evaluation method is proposed to evaluate the accuracy of the data 
mining model in the on-line prediction of transient stability after the failure. Considering the 
distribution of failure probability, the paper first searches for possible faults, then evaluates the 
accuracy according to the actual probability distribution of uncertain factors, which is more objective 
than Monte Carlo method. Finally, simulation is carried out with the new England 39 bus system, the 
test results show that this method can not only comprehensively evaluate of data mining classification 
decision model to take timely emergency measures, but also compare the mining accuracy models in 
the prediction of the objective of different data. 

1. Introduction 

Due to the continuous increase of load demand in power system, the gradual accession of new 
transmission lines, and the diversification of generation / load types and modes, the operation 
conditions of them may become increasingly intense in the future [1]-[3]. In this case, the interference 
in the system may make it more and more approachable to the limit of the stable operation. The 
complexity of the system and the contingency and uncertainty in the operation increase the 
performance requirements for the system stability prediction method. With the gradual promotion of 
wide area measurement technology in power system, data mining technology has gradually become 
an effective way to solve the problem of real-time evaluation of system stability. Through the data 
mining technology of off-line simulation training system of the large disturbance, can conveniently 
use real-time data synchronization phasor measurement unit is obtained in the case of an emergency 
system transient stability information and decision support, and the controller transient stability 
prediction information timely sent to the operators of power system or system level, to trigger 
emergency corresponding control action, thus preventing the system lose stability or to minimize the 
consequences of the accident[4]-[7]. 

At present, different data mining technologies have been combined with PMU for online transient 
stability prediction, such as artificial neural network, decision tree and support vector machine, and 
show a certain effect and robustness. Although the correlation method predicts accuracy in the range 
of 90% to 100%, the time required to make the decision is in the four weeks to 1 s after the 
interference is cleared. In addition, they use inconsistent testing methods. There are several typical 
test data sets of verification accuracy: (1) failure to use multiple faults during training;(2) a set of 
specially designed failures;(3) a set of failures in multiple system operation situations. For example, 
in the literature [8], three data sets are used to test the DT model, and multiple fault locations and 
system operation points are considered. In the literature [9], the SVM model is produced using six 
different fault tests. The accuracy of these models to present only shows that the data mining model to 
a certain degree of robustness, cannot describe the model in the overall performance of the 
complicated operation conditions, and the accuracy of each model presented is not convenient to 
compare. 

In this paper, a general probability evaluation method is proposed to evaluate the accuracy of the 
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data mining model in the on-line prediction of transient stability after the failure. Considering the 
distribution of failure probability, we first search for possible faults, then evaluate the accuracy 
according to the actual probability distribution of uncertain factors, which is more objective than 
Monte Carlo method. The evaluation results highlight the influence of a variety of uncertain factors 
on the accuracy of the system transient stability prediction, and determine the accuracy of the data 
mining model in real time. In this paper, the support vector machine (SVM) in data mining is used as 
an example to study the evaluation method. Without losing its generality, other data mining 
techniques can also be used to illustrate the evaluation method. This method can not only 
comprehensively evaluate the classification decisions made by data mining models in time of 
emergency, but also objectively compare the accuracy of different data mining models in prediction. 

2. Probabilistic method for predicting probability of transient stability 

2.1 Support vector machine model for transient stability 

Assuming that {(x1,y1),…,(xl,yl)} is a training data set for the power system, which represents the 
input space of the sample, iy R indicating the corresponding target value. The SVM estimation 
function can be expressed as: 

                                                                    ( ) ( ( ))f x w x b                                                                  (1) 

( )x  is the input space to high dimension space of nonlinear mapping, the SVR is to practical 
problems through nonlinear mapping into a high dimensional feature space, structure in high 
dimensional feature space linear regression function to realize nonlinear regression function in the 
original space. The coefficient w and b can be estimated by minimizing regression risk, and the 
regression risk is expressed as: 
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(.)  is a loss function, C is a constant, and you can get a vector w that's represented by the data 
point by minimizing function (2). And this paper USES the radial basis kernel function to calculate: 
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The value of w can be found according to Lagrange multiplier. For variable b, it can be obtained by 
using KKT condition: 
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SVM applied the generated SVM model to the online process after the previous training 
automatically learned the potential relationship between predictive attributes and predicted targets. In 
practical application, when a fault is detected just after removal from the system (by voltage and 
monitoring system in the frequency or the circuit breaker status, extraction method etc.) the predicted 
attribute sample and input feature of the SVM model, the model identification and backward input 
features make reasonable decision. The consequences lead to wrong decisions the emergency is: 
when the stable condition prediction is unstable, will lead to control action is not necessary; and the 
unstable situation prediction is stable, it will lead to control action delay or action, resulting in system 
instability. 

2.2 Probability evaluation of prediction accuracy of SVM model 

In practice, many of the basic factors that affect transient stability in practice are probabilistic, 
including and fault location, fault type, fault removal equipment operation time, and failure occurs in 
the system operation status, such as load level and network topology, power generation capacity. 
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Therefore, probabilistic method is the most appropriate way to establish an SVM model to predict the 
accuracy of the accuracy. 

In order to improve the performance of the algorithm, this paper only used 5 probabilistic factors 
in the test process: (1) fault removal time;(2) fault location;(3) failure type;(4) load level;(5) network 
topology. There are more factors to consider in practice. For a type of failure, in a possible location, 
under certain load level and a network topology, fault clearance time, in the form of random change, 
to generate a set of fault. Based on the test results of this group, the prediction accuracy klmnA  of a 

fault location k, fault type l, load level m and network topology n can be obtained. System failure 
types can be divided into single-phase grounding (LG), interphase fault (LL), two-phase fault (LLG) 
and three-phase (LLL) failure. Fault locations may occur in different nodes or in various transmission 
lines; And the system load changes all day and all year. Since the fault location, fault type, load level 
and network topology can be considered independent in most cases, probability prediction accuracy 
A can be obtained according to probability theory. 

   klmn k l m nP P P P P                                                                  (5) 

kP , lP , mP and nP  respectively indicate the probability of fault location, fault type, load level and 

network topology. 
For all the possible failure location (k), all the possible failure type (l), all possible load level (m), 

and all possible network topology (n), probability prediction accuracy A can be calculated by (6): 
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The probabilistic prediction accuracy expression (6) can be easily extended to other uncertainties, 
including power generation mode, load model parameters, and the presence and output of new energy 
generation. The extension will make the formula (5) and (6) be modified separately (5) to the right, 
including the probability of more factors and the sum of (6) on the right side.The expansion will 
produce different quantitative results and more computation for A, but the method of evaluation will 
remain unchanged. 

3. Case study 

The test system used in this study is the IEEE-39 bus system. Specific set up 20 fault locations, 
four kinds of fault types, six system load levels and nine kinds of network topology, the simulation 
tests are included in each group have 11 automatic removal of fault, fault clearance time from 0.09 s 
to 0.09 s (changes along with the increment of 0.02 s). After the failure of each fault, 10 s simulation, 
a total of 4,521 sets of tests, including 6,0378 different failures. 

Figure 1 shows the prediction probability accuracy curve of 20 different fault locations in all fault 
types, load levels and network topologies. Based on the probability distribution of the test system, the 
fault location has less influence on the prediction probability accuracy. The prediction accuracy of the 
data based on the immediate sampling after the fault resection is above 94.5%. After 0.2 s, all 20 
accuracies are over 97.3%, and the differences between them are small. 

Figure 2 shows the prediction probability curve of four different types of failure types in all fault 
location, load level and network topology. In fact, in the test system, because the design of the system 
itself can withstand the most serious situation, unbalanced failure often leads to the problem of 
unstable system. As shown in table 6.6, the number of unstable simulation results (or percentages) 
increases gradually from single-phase grounding to three-phase fault. Therefore, the line at the top of 
figure 2 is 100% in all 5.01 s, indicating that the DT model is highly reliable for predicting the most 
common type fault of single-phase grounding. For two phase fault and two phase ground fault of the 
two relatively more easily lead to unstable type, fault immediately after removal of sampling data are 
used to get the probability forecast accuracy is about 98%, using fault removal after 0.5 s sampling 
data of the probability prediction accuracy is over 99%.For the most serious but probability of the 
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smallest three-phase fault, lowest probability forecast accuracy, immediately after the failure to 
remove the forecast accuracy can reach 93%, only when the fault removal of 0.5 s increased to more 
than 98%. 
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Figure 1. Probability accuracy of different fault locations 
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   Figure 2. Probability accuracy of different fault types 
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Figure 3. Probability accuracy of different load levels 
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Figure 4. Probability accuracy of different topology 

Figure 3 shows the predicted probability accuracy curve of the load level of six different systems 
in all fault locations, fault types and network topologies.When the load level is low, the system runs 
away from the stability limit, and the result of unstable simulation results is small.When the relative 
load level from 0.57 to 0.87, based on the failure sampling data immediately after removal of the 
accuracy of the resulting probability were higher than 99%, this shows that the SVM model under 
normal load level has the very high reliability prediction.When the relative load level is 0.94, the 
prediction accuracy of the data based on the 0.2s sampling based on the fault removal is also more 
than 98%.When the system is in extremely adverse operating conditions, the maximum load levels, 
about 33% of the fault is not stable, based on the failure probability forecast accuracy of sampling 
data immediately after removal of only 93%, and it was not until 0.4 s will rise to 98%. 

Figure 4 shows the prediction probability curve of nine different network topologies in all fault 
location, fault type and load level. It can be seen that based on the probability distribution of the test 
system, the network topology has less influence on the prediction probability accuracy.The 
prediction accuracy of the data based on the immediate sampling after the fault resection is above 
94%.After the fault resection was 0.3 s, all 9 accuracy was over 98%, and the differences between 
them were small. 

4. Conclusions 

In this chapter, a general probabilistic evaluation method is proposed to evaluate the accuracy of 
the data mining model. Evaluation method on the basis of the data mining model, considering the 
fault time, fault type, fault location, load level and network topology the probability distribution of 
five factors, comprehensive evaluation of the accuracy of the data mining model. According to the 
above analysis and test results, the proposed evaluation method compared with the existing research, 
advantage lies in: (1) based on the basic factors influencing the transient stability and the failure 
probability distribution of comprehensive consideration, can more fully and objectively evaluate the 
accuracy of the data mining model.(2) it is independent of the data mining model used, and therefore 
has universal applicability, which can be fairly compared with the accuracy of different data mining 
models. In addition, based on the probability of DT evaluation test results show that the method can 
consider various factors that affect the probability distribution of the premise, in a very short period 
of time, has the high accuracy of prediction results.  
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